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Abstract: A new interface element constitutive model is proposed in this study for analyzing masonry using the simplified micromodeling
(SMM) approach, in which mortar and two unit–mortar interfaces are lumped into a zero-thickness joint (modeled using an interface element)
between expanded masonry units. The new model is capable of simulating tension cracking, shear slipping, and compression failure, and is
defined by a convex composite failure surface consisting of a tension-shear and a compression cap failure criterion. It removes the singularity
in the tension-shear region but not in the compression-shear region. In addition, the proposed model is based on the hypothesis of strain
hardening. The robustness and computational cost of the proposed model were compared with different constitutive models (which are
based on three, two, and one failure criteria) that have been widely used in the literature to describe masonry behavior through a series of
one-element tests and through the comparison of finite-element (FE) response simulation of an unreinforced masonry shear wall. The FE
response results indicate that the proposed constitutive model is more efficient than and at least as accurate as the other constitutive models for
analyzing masonry using the SMM approach. DOI: 10.1061/(ASCE)EM.1943-7889.0001592.© 2019 American Society of Civil Engineers.
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Introduction

Finite-element (FE) modeling of masonry structures is a very
complex problem in computational mechanics which continues to
attract the interest of the research community after several decades
of investigations. Several FE approaches have been proposed, with
different levels of accuracy, computational cost, and information
details (Lourenço 1996; Pelà 2009). The highest level of accuracy
and detail of the mechanical behavior of masonry can be achieved
using the FE micromodeling approach, in which different masonry
components, i.e., masonry units (bricks/blocks) and mortar, are
distinctly represented through continuum elements, and the unit–
mortar interface is represented by interface elements (Lourenço
1996). Thus, micromodeling explicitly addresses the intrinsic dis-
continuity and heterogeneity of masonry elements. However, it is
also computationally very intensive, and thus is rarely employed
for analyzing masonry. The computational cost can be reduced by
lumping mortar and two unit–mortar interfaces into a zero-
thickness joint (generally modeled using an interface element) be-
tween expanded masonry units (Page 1978; Lourenço 1996). This
modeling approach is referred to as simplified micromodeling
(SMM) and has been widely employed to investigate the local
behavior of masonry (Page 1978; Lourenço 1996; Giambanco et al.
2001; Spada et al. 2009; Dolatshahi and Aref 2011; Macorini and
Izzuddin 2011; Aref and Dolatshahi 2013; Kumar et al. 2014b).

The capability of the SMM approach to simulate the mechanical
response of masonry properly relies upon the accuracy and robust-
ness of the employed interface element, which relates the traction
vector to the relative displacement vector. In fact, in most SMM
approaches, the nonlinearity of the system is often concentrated
in the interface element, and masonry units are assumed to be
elastic in nature (Page 1978; Lotfi and Shing 1994; Lourenço
1996; Chaimoon and Attard 2007; Dolatshahi and Aref 2011;
Macorini and Izzuddin 2011). Hence, interface elements should
be able to describe all major failure mechanisms of masonry under
multiaxial stress conditions (Page 1983; Dhanasekar et al. 1985;
Andreaus 1996; Lourenço 1996; Cuellar-Azcarate 2016), which in-
clude (1) cracking of masonry units in direct tension, (2) cracking
of mortar joints, (3) bed or head joint failure due to sliding under
normal stress, (4) diagonal tension cracking of masonry units, and
(5) masonry crushing.

Zero-thickness interface elements formulated in terms of
traction-separation relationships were originally introduced by
Goodman et al. (1968) to model discontinuity in rock mechanics.
Page (1978) introduced the use of interface elements between elas-
tic continuum elements (representing expanded masonry units) in
failure analysis of masonry. The nonlinear behavior of masonry
was simulated through the interface behavior, which was modeled
through a constitutive model that included a brittle failure in
tension and hardening in shear/compression. However, compres-
sion (crushing) failure was not included in the interface elements
(e.g., Page 1978; Lotfi and Shing 1994; Anand and Yalamanchili
1996; Giambanco and Di Gati 1997) until an appropriate constit-
utive model for analysis of masonry shear walls was developed by
Lourenco and Rots (1997) to simulate/predict the ultimate strength
and postpeak behavior of masonry. The Lourenco and Rots model
is a multisurface composite interface model (CIM) that consists of
three different failure criteria (failure surfaces), i.e., a Rankine fail-
ure criterion (tension cut-off criterion) for Mode-I failure (opening
in tension), a Mohr–Coulomb failure criterion for Mode-II failure
(in plane shearing or sliding), and a compression cap failure
criterion for compression failure. The Rankine and the Mohr–
Coulomb failure surfaces are coupled through internal softening
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parameters, whereas the Mohr–Coulomb and the compression cap
failure surfaces are uncoupled. This multisurface CIM has been
used by many researchers to investigate the behavior of masonry
structures (Oliveira and Lourenço 2004; Furukawa et al. 2010;
Dolatshahi and Aref 2011; Tarque 2011; Miccoli et al. 2015).

Numerous interface element constitutive models (based on num-
bers of failure surfaces, different failure criteria, and softening/
hardening hypotheses) have been proposed to investigate the
behavior of masonry by using the SMM approach. The simplest
approach in defining an interface element constitutive model is
to adopt one failure surface to describe each of the three major fail-
ure mechanisms, i.e., tension, shear, and compression, (Lourenço
1996; Oliveira and Lourenço 2004; Chaimoon and Attard 2007;
Minga et al. 2018). However, the use of multiple failure surfaces
leads to singularity problems at the intersections between two of
these surfaces (Abbo and Sloan 1995). Therefore, several constit-
utive models were developed with failure surfaces representing two
(Lourenço 1994; Macorini and Izzuddin 2011) or three (Citto 2008;
Bakeer 2009; Kumar et al. 2014a) failure mechanisms at a time.
The use of these more complex failure surfaces can introduce issues
of robustness and may increase the computational cost of the
constitutive model (Lourenço 1994).

This paper proposes a new interface element constitutive model
that is capable of simulating tension cracking, shear slipping,
and compression failure for masonry analysis using the SMM ap-
proach. The proposed constitutive model is developed within the
framework of nonassociative elastoplastic materials with softening.
Other approaches could be used to improve the efficiency and
robustness of masonry modeling based on the SMM approach,
e.g., the plasticity-damage approach (Gambarotta and Lagomarsino
1997a, b; Minga et al. 2018), the variational approach (Khisamitov
and Meschke 2018), the damage approach (Greco et al. 2017;
Khisamitov and Meschke 2018), and the elastoviscoplastic model-
ing approach (Shing and Manzouri 2004; Tang et al. 2007). How-
ever, the consideration of these alternative approaches is beyond
the scope of this study. The robustness and computational cost of
the proposed constitutive model are compared with those of different
constitutive models that have been widely used in the literature to
describe masonry behavior through a one-element test. In addition,
the performance of the different constitutive models is investigated
in terms of accuracy and computational cost by simulating an un-
reinforced masonry shear wall for which well-documented experi-
mental results are available in the literature. Finally, conclusions are
made based on the results obtained in the present study.

Research Significance

This paper introduces a novel mechanical constitutive model
for interface elements used in the context of the SMM approach
for masonry structures. The proposed constitutive model achieves
robustness, computational efficiency, and accuracy in modeling
masonry structures under multiaxial stress conditions by (1) over-
coming the singularity problem that arises from the interaction be-
tween the Mohr–Coulomb failure criterion and the Rankine failure
criterion, and (2) using the strain-hardening/softening hypothesis to
improve the numerical robustness of the solution during the evo-
lution of the yield surfaces. In addition, the proposed constitutive
model is easily extendable to cyclic/hysteretic behavior. Therefore,
the constitutive model developed here for interface elements can
extend the use of the SMM approach to investigate the behavior
of masonry components and structures.

This paper also investigates the advantages and disadvantages of
different constitutive models for interface elements when using the

same integration scheme. This comparison provides useful infor-
mation for further development of interface element constitutive
models to simulate the mechanical behavior of masonry and other
quasi-brittle materials.

Proposed Coupled Tension-Shear Interface Model

Interface elements permit discontinuities in the displacement field,
and their behavior can be described in terms of a relation between
the traction, σ, and relative displacements, u, across the interface.
Thus, the generalized elastic behavior of the interface element con-
stitutive model can be written in standard form as

σ ¼ k × u ð1Þ
where, for a three-dimensional (3D) configuration, σ ¼
fσ; τ s; τ tgT ; u ¼ fun; us; utgT ; and k ¼ diag½kn; ks; kt�, where
diag½·� = diagonal matrix operator, n = normal components, and
s and t = shear components in two orthogonal directions. The com-
ponent of the elastic stiffness matrix, k, for the constitutive model
in the SMM approach can be obtained from the properties of the
masonry components (i.e., masonry units and mortar), and can be
written (Rots and Picavet 1997)

1

kn
¼

�
hm
Em

− hm
Eb

�
;

1

ks
¼ 1

kt
¼

�
hm
Gm

− hm
Gb

�
ð2Þ

where Em and Eb = Young’s modulus for mortar and masonry units,
respectively; Gm and Gb = shear modulus for mortar and masonry
units, respectively; and hm = thickness of the mortar joints. Eq. (2)
may significantly overestimate the elastic stiffness of the masonry
joint’s interface, particularly when the masonry units are weaker
than the mortar or when the bond surface between mortar and units
presents gaps (Rots and Picavet 1997; Chisari et al. 2018). Thus,
several approaches have been proposed to obtain a better represen-
tation of the actual response of unreinforced masonry, e.g., by intro-
ducing a reduction factor in the calculation of the elastic stiffness
based on Eq. (2) (Rots and Picavet 1997; Chaimoon and Attard
2007; da Porto et al. 2010), or by proposing more-refined model
parameter calibration strategies (Chisari et al. 2015).

The inelastic behavior of the proposed constitutive model for
interface elements, referred to as coupled tension-shear interface
model (CTSIM) hereafter, is defined by a convex composite failure
surface (Fig. 1), which consists of a tension-shear failure criterion
F1ðσ;κ1;κ2Þ and a compression cap failure criterion F2ðσ;κ3Þ,

Tension-shear failure criterion
Compression cap failure criterion

Fig. 1. Typical composite failure surface for the proposed CTSIM in
stress space.
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where κ1, κ2, and κ3 are the scalar softening/hardening parameters.
The selection of this composite failure surface, which removes the
singularity in the tension-shear region but not in the compression-
shear region, is based on the fact that the shear and tensile behaviors
of masonry are coupled, whereas the compression and shear behav-
iors can be considered as uncoupled (Lourenço 1996). Thus, re-
moving the singularity in the tension-shear region can reduce the
computational cost of the interface element, whereas removing the
singularity in the compression-shear region is not effective in
reducing the computational cost of the interface element (Lourenço
1994). The specific form of F1ðσ; κ1;κ2Þ used in this study
presents several novel characteristics compared with other existing
models, and was used here for the first time in the context of inter-
face elements for masonry modeled using the SMM approach.

Tension-Shear Failure Criterion

A single hyperbolic surface is used to represent pressure-dependent
shear failure and tensile cracking. The use of this surface over-
comes the singularity problem that occurs in multisurface failure
criteria, i.e., in the combination of the Mohr–Coulomb and Rankine
failure criterion (Abbo and Sloan 1995), and it enables the pro-
posed interface element constitutive model to converge faster for
larger load steps at the Gauss point level. The failure criterion origi-
nally proposed by Caballero et al. (2008) for the concrete fracture
problem is adopted here for the first time to describe the tension-
shear yield surface as

F1ðσ;κ1;κ2Þ ¼ −½Cðκ1;κ2Þ− σ · tanϕðκ1;κ2Þ�
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ 2 þ ½Cðκ1;κ2Þ− σ̄ftðκ1;κ2Þ · tanϕðκ1;κ2Þ�2

q
ð3Þ

where τ2 ¼ τ2s þ τ2t ; ϕ = frictional angle; σ̄ftðκ1;κ2Þ = tensile yield
stress; and Cðκ1; κ2Þ = cohesive yield stress. This hyperbolic fail-
ure criterion represents an improvement with respect to other cri-
teria described by quadratic terms (Caballero 2005; Citto 2008;
Macorini and Izzuddin 2011), which consist of two hyperbolic
branches, only one of which has physical meaning. Therefore, this
modified yield function relaxes the requirement for small load steps
at the Gauss point level, which otherwise would be needed to guar-
antee that the computed stress is associated with the correct branch
of the hyperbolic surface (Caballero et al. 2008). A strain-softening
hypothesis is considered for this failure criterion, in which the nor-
mal and shear plastic relative displacements jointly control the soft-
ening of both tensile and cohesive yield stresses. The tensile
and cohesive yield stresses are implicitly coupled, and softening
in the tensile yield stress produces a proportional softening in
the cohesive yield stress and vice versa. Thus, the rates of the scalar
softening parameters are defined as follows by adapting the expres-
sions originally derived by Lourenco (1996) to satisfy simultane-
ously the Mohr–Coulomb and Rankine failure criteria, respectively,
at their singularity point:

κ̇1 ¼ hu̇pni þ
GI

f

GII
f

·
C0

ft
·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ju̇ps j2 þ ju̇pt j2

q
ð4Þ

κ̇2 ¼
GII

f

GI
f
·
ft
C0

· hu̇pni þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ju̇ps j2 þ ju̇pt j2

q
ð5Þ

where ft = tensile strength; C0 = initial cohesion; GI
f = Mode-I

fracture energy; GII
f = Mode-II fracture energy; upn , ups , and

upt = plastic relative displacements in the n, s and t directions,
respectively; h·i are Macaulay brackets; and a superposed dot

indicates differentiation with respect to (pseudo)time. This form
of the rates of the softening parameters allows their efficient com-
putation when using a single smooth yield surface. In fact, the use
of the Macaulay brackets ensures that the softening parameters are
affected by tensile stresses in the shear-tension region, whereas they
are not affected by compression stresses in the shear-compression
region, consistent with the typical behavior of masonry joints
(which are damaged by tension and shear stresses, but not by low
compression stresses). The tensile yield stress σ̄ftðκ1;κ2Þ and
cohesive yield stress Cðκ1; κ2Þ are respectively defined as

σ̄ftðκ1;κ2Þ ¼ ft · exp

2
4−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ft
GI

f
· κ1

�
2

þ
�
C0

GII
f
· κ2

�
2

s 3
5 ð6Þ

Cðκ1; κ2Þ ¼ C0 · exp

2
4−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ft
GI

f
· κ1

�
2

þ
�
C0

GII
f
· κ2

�
2

s 3
5 ð7Þ

The exponential terms are defined so to ensure that the tensile and
cohesive yield stresses evolve in a proportional fashion (i.e., the
shape of the yield function remains the same during the analysis)
and include the effects of both softening parameters. The softening
of the friction angle is assumed to be proportional to the softening
of the cohesive yield stress, that is

tanϕðκ1;κ2Þ ¼ tanϕr þ ðtanϕ0 − tanϕrÞ ·
Cðκ1;κ2Þ

C0

ð8Þ

where ϕ0 = initial friction angle; and ϕr = residual friction angle. A
nonassociative formulation is assumed for the tension-shear failure
criterion because the friction angle, ϕ, and the dilatancy angle, ψ,
are generally considerably different for masonry (Atkinson et al.
1989; Van der Pluijm et al. 2000). The plastic potential function
Q1ðσ;κ1; κ2Þ is defined as (Caballero 2005)

Q1ðσ;κ1;κ2Þ ¼ −½CQðκ1;κ2Þ − σ · tanψðκ1;κ2Þ�2 þ τ2

þ ½CQðκ1; κ2Þ − σ̄ftðκ1; κ2Þ · tanψðκ1; κ2Þ�2 ð9Þ

where CQðκ1; κ2Þ = apparent cohesive yield stress. The behavior of
parameters CQ and ψ is obtained by substituting CQ and CQ0 for C
and C0, respectively, in Eq. (7), and substituting ψ, ψ0 and ψr for ϕ,
ϕ0, and ϕr, respectively, in Eq. (8). The plastic potential function in
Eq. (9) consists of quadratic terms, and, thus of two hyperbolic
branches, similar to the failure yield criterion used, e.g., by
Caballero (2005), Macorini and Izzuddin (2011), and Citto (2008),
in which the same functional form was employed for both yield
criterion and plastic potential function. However, because for the
proposed CTSIM the yield criterion functional form is different
from that of the plastic potential function, the existence of a
non-physically meaningful branch does not introduce convergence
issues. In fact, only because only the physically meaningful branch
is actually used due to the constraints imposed by the consistency
condition during the plastic-corrector step of the CTSIM’s return
mapping algorithm (Simo and Hughes 2006). The plastic potential
function defined by Eq. (9) presents several computational advan-
tages compared with other existing expressions, e.g., the derivatives
of the plastic potential function with respect to stress are simpler
than those for the plastic potential function proposed by Caballero
et al. (2008).

Compression Cap Failure Criterion

The compression cap model used in the proposed constitutive
model is described by an elliptical yield function originally

© ASCE 04019022-3 J. Eng. Mech.
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introduced for orthotropic plasticity of soil materials (Schellekens
1992) as

F2ðσ; κ3Þ ¼ Cnn · σ2 þ Css · τ 2 þ Cn · σ − σ̄2
compðκ3Þ ð10Þ

where Cnn and Cn = parameters that control the coordinates of the
center of the compression cap failure surface; Css = parameter that
controls the width of the cap failure surface in the shear stress axis;
and σ̄2

compðκ3Þ = compressive yield stress, which determines the
width of the cap failure surface in the compressive stress axis.
In this study, the center of the cap failure surface was assumed
to coincide with the origin of the σ − τ plane with Cnn ¼ 1 and
Cn ¼ 0, in order to avoid the activation of this surface in the
tension-shear region, which is controlled by the tension-shear
failure criterion described in the previous subsection. A strain-
hardening/softening hypothesis is introduced for the compressive
yield stress, which describes the rate of the corresponding scalar
softening parameter as

κ̇3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu̇pnÞ2 þ ðu̇ps Þ2 þ ðu̇pt Þ2

q
ð11Þ

and the compressive yield stress is defined as

σ̄compðκ3Þ¼

8>>>>>>>><
>>>>>>>>:

σ̄0þðσ̄p− σ̄0Þ ·
�
2κ3

κp
− κ23
κ2p

�
if κ3 ≤κp

σ̄pþðσ̄m− σ̄pÞ ·
�
κ3−κp

κm−κp

�
2

if κp < κ3 ≤κm

σ̄rþðσ̄m− σ̄rÞ · exp
�
m ·

κ3−κm
σ̄m− σ̄r

�
if κ3 >κm

ð12Þ

where m ¼ 2ðσ̄m − σ̄pÞ=ðκm − κpÞ; σ̄0, σ̄p, σ̄m, and σ̄r = initial
(i.e., corresponding to the transition from linear to nonlinear behav-
ior), peak, intermediate (i.e., corresponding to the inflection point
in the softening branch), and residual compressive yield stresses,
respectively; and κp and κm = total plastic strain at peak and in-
termediate compressive yield stress. Fig. 2 illustrates the evolution
of the compressive yield stress, σ̄comp, as a function of the param-
eter κ3. In Eq. (12), the first branch was taken from Lotfi and Shing
(1991), whereas the second and third branches were taken from
Lourenço (1996). An associative flow rule was assumed for the
compression cap failure criterion, thus, Q2ðσ;κ3Þ ¼ F2ðσ;κ3Þ.

The CTSIM was implemented in the commercial finite-element
software package ABAQUS version 6.13 through a user-defined

material subroutine (UMAT) written in FORTRAN (Metcalf
et al. 2011) for an implicit integration scheme (Bathe 2006).
The implicit backward Euler integration method (Simo and
Hughes 2006) is used to integrate the different constitutive equa-
tions of the CTSIM, which leads to a system of nonlinear algebraic
equations. These nonlinear equations are solved monolithically
with the local/global Newton–Raphson technique as described
by Ottosen and Ristinmaa (2005), Caballero et al. (2008), and
Macorini and Izzuddin (2011), which leads to a combined local
and global solution strategy. In addition, the CTSIM is combined
with an adaptive substepping strategy to ensure convergence
and accuracy of the final solution at both local and global levels
(Pérez-Foguet et al. 2001; Caballero et al. 2008; Macorini and
Izzuddin 2011).

Comparison of Constitutive Models Using
One-Element Test

In this section, the robustness, computational cost, and accuracy of
the CTSIM are compared with three interface element constitutive
models that are available in the literature, namely the constitutive
models proposed by Lourenco and Rots (1997), Macorini and
Izzuddin (2011), and Citto (2008). Fig. 3 shows the typical failure
surfaces corresponding to each of these constitutive models and
compares them with the failure surface corresponding to the
CTSIM. These failure surfaces are plotted using the following val-
ues of the material parameters: C ¼ 0.35 MPa, σ̄ft ¼ 0.25 MPa,
σ̄comp ¼ 3.50 MPa, and tanϕ ¼ 0.65. The Lourenco and Rots
model consists of three failure surfaces, as previously described
in the “Introduction” section. The Macorini and Izzuddin model
is defined by two hyperbolic failure surfaces (failure criteria),
i.e., a tension-shear failure surface that represents Mode-I and
Mode-II fracture, and a compression failure surface. Both failure
surfaces shrink when the plastic work (which drives the softening
of the material parameters) increases. The Citto model is composed
of a single failure surface, which represents all three failure mech-
anisms of the interface element, i.e., Mode-I, Mode-II, and com-
pression failure. The evolution of the hardening parameters is
governed by a set of work-hardening/softening rules and the rate
of plastic work (Citto 2008). Furthermore, the CTSIM and the
Lourenco and Rots model use the hypothesis of strain hardening
for the evolution of the hardening/softening parameters; whereas,
the Macorini and Izzuddin and the Citto models use the hypothesis
of work hardening. All these constitutive models were also imple-
mented in the FE software ABAQUS by using a UMAT subroutine,
similar to the implementation of the CTSIM, in order to provide a
common platform for the comparison of these models with the
CTSIM by removing the bias that could arise from the use of differ-
ent integration schemes.

One-Element Test

In the following section, the performance of the different models is
assessed through a one-element test. A single zero-thickness inter-
face element was subjected to 13 different load paths defined by the
angle θ ¼ arctanðuτ=unÞ, where uτ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2s þ u2t

p
(Fig. 4), i.e., by

considering a proportional increase of axial and shear relative dis-
placements corresponding to θ ¼ 0°, 15°, 30°, 45°, 60°, 75°, 90°,
105°, 120°, 135°, 150°, 165°, and 180°. The relative displacement
magnitude was incremented from juj ¼ 0 mm to juj ¼ 0.2 mm us-
ing a displacement control analysis. Four different load step sizes
were considered by dividing the final relative displacements into 5,
10, 50, and 100 equal increments (designated N5, N10, N50, and
N100 respectively). The material parameters corresponding to the

Fig. 2. Hardening/softening law for compression cap failure criterion.
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joints of a shear wall described by Vermeltfoort and Raijmakers
(1993a, b) and given in Tables 1 and 2 were used in these
one-element tests. The adaptive substepping algorithm was not ac-
tivated in any of the considered constitutive models during these
analyses to ensure a consistent (i.e., fixed) load step size for all
constitutive models during each set of analyses. A total of 52
finite-element response simulations (corresponding to 13 load
paths, each with 4 load step sizes) were carried out for each con-
stitutive model, and these simulations were performed in ABAQUS
with one CPU on a computer with an Intel Core i5-2400S 2.50 GHz
processor and 12.0 GB RAM.

To determine the accuracy of the constitutive models, a base
load step size corresponding to 1,000 relative displacement incre-
ments (i.e., N1000 with jΔuj ¼ 2 × 10−4 mm) was used to com-
pare the results of the one-element tests. This load step size
was considered sufficiently small to serve as an accurate reference

solution for estimating the percentage error, δ, which is evaluated
through the expression (Simo and Taylor 1986)

δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðσn − σexactÞT · ðσn − σexactÞ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σTexact · σexact

p × 100 ð13Þ

where σn = numerical traction response of the single interface
element obtained by using different relative displacement incre-
ments; and σexact = reference solution of the traction response cor-
responding to the same constitutive model used to evaluate σn with
1,000 relative displacement increments (i.e., for N1000 load step
sizes). The CPU time ratio (CTR) of the simulations for the differ-
ent constitutive models with respect to the CPU time of the refer-
ence solution obtained using the CTSIM for each load path was
also calculated. The results in terms of CTR and δ for the different
constitutive models are reported in Tables 3 and 4 for the tension-
shear region (load paths θ ¼ 0°, 15°, 30°, 45°, 60°, 75°, 90°) and the
compression-shear region (load paths θ ¼ 105°, 120°, 135°, 150°,
165°, and 180°), respectively. Simulation results with percentage
errors δ higher than 5% are bolded in these tables. Some simula-
tions did not converge to a solution for large (fixed) load step sizes
and are identified with a dash. As expected, the presented results
indicate that the δ increased with decreasing CTR along all load
paths for all constitutive models.

0

15

30

45

60

75
90105

120

135

150

165

180

Fig. 4. Load paths used in the one-element test of the different
constitutive models.

Table 1. Elastic properties of masonry units, joints, and potential cracks

Property Value

Masonry units
Eb (MPa) 16,700
υ 0.15

Joints
kn (N=mm3) 82.00
ks (N=mm3) 36.00

Potential cracks
kn (N=mm3) 10,000
ks (N=mm3) 10,000

Table 2. Inelastic properties for joints and potential cracks

Property Joints Potential cracks

Tension-shear failure criterion
ft (MPa) 0.25 2.0
GI

f (N=mm) 0.018 0.008
C0 (MPa) 1.45ft 1.45ft
CQ0 (MPa) 50C0 C0

tanϕ0= tanϕr 0.75/0.75 1.0/1.0
tanψ0= tanψr 0.001/0.0001 1.0/1.0
GII

f (N=mm) 0.125 0.50
Compression cap failure criterion

σ̄0 (MPa) 3.5 —
σ̄p (MPa) 10.5 —
σ̄m (MPa) 5.25 —
σ̄r (MPa) 1.5 —
κp 0.09 —
κm 0.49 —

(a)

Lourenco and Rots
CTSIM

(b)

Macorini and Izzuddin
CTSIM

(c)

Citto
CTSIM

Fig. 3. Typical failure surface in stress space for (a) Lourenco and Rots model; (b) Macorini and Izzuddin model; and (c) Citto model.
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Table 3. CTR versus percentage error (δ) for tension-shear region

θ N

CTSIM
Lourenco and Rots

model
Macorini and
Izzuddin model Citto model

CTR δ CTR δ CTR δ CTR δ

0 N100 0.093 <0.01 0.106 <0.01 0.106 2.62 0.087 96.45
N50 0.050 <0.01 0.050 <0.01 0.050 5.58 0.043 >100
N10 0.012 <0.01 0.012 <0.01 — — — —
N5 0.006 <0.01 0.006 <0.01 — — — —

15 N100 0.099 <0.01 0.106 <0.01 0.113 2.26 0.134 1.67
N50 0.042 <0.01 0.049 <0.01 0.049 4.81 0.056 >100
N10 0.014 <0.01 0.021 <0.01 — — — —
N5 0.007 <0.01 0.007 0.02 — — — —

30 N100 0.101 <0.01 0.101 <0.01 0.109 1.60 0.116 1.44
N50 0.058 <0.01 0.051 <0.01 0.051 3.40 0.051 >100
N10 0.014 <0.01 0.014 0.03 — — — —
N5 0.007 <0.01 0.007 0.04 — — — —

45 N100 0.093 <0.01 0.099 <0.01 0.105 0.92 0.099 1.09
N50 0.049 <0.01 0.062 <0.01 0.049 1.94 0.049 2.30
N10 0.019 <0.01 0.019 <0.01 — — — —
N5 0.006 <0.01 0.006 67.70 — — — —

60 N100 0.096 <0.01 0.110 <0.01 0.103 0.03 0.103 0.68
N50 0.062 <0.01 0.062 <0.01 0.055 0.08 0.055 1.42
N10 0.014 <0.01 0.021 <0.01 0.021 1.28 0.014 >100
N5 0.007 <0.01 0.007 >100 — — — —

75 N100 0.097 <0.01 0.090 <0.01 0.111 0.10 0.097 0.29
N50 0.056 <0.01 0.049 <0.01 0.056 0.21 0.049 0.61
N10 0.014 <0.01 0.014 <0.01 0.014 1.67 0.014 4.04
N5 0.007 0.03 0.007 37.87 0.007 1.83 0.007 10.16

90 N100 0.097 0.42 0.103 0.02 0.109 0.35 0.085 0.22
N50 0.048 0.87 0.048 0.04 0.055 0.72 0.042 0.46
N10 0.012 3.42 0.012 0.33 0.018 3.50 0.018 2.60
N5 0.006 5.90 0.006 1.46 0.012 8.37 0.006 4.58

Note: Bold values denote percentage errors δ > 5%.

Table 4. CTR versus percentage error (δ) for compression-shear region

θ N

CTSIM
Lourenco and Rots

model
Macorini and
Izzuddin model Citto model

CTR δ CTR δ CTR δ CTR δ

105 N100 0.105 0.02 0.105 0.01 0.112 0.03 0.112 0.12
N50 0.049 0.05 0.056 0.02 0.042 0.31 0.042 0.29
N10 0.014 0.39 0.014 0.33 0.014 3.53 0.014 1.09
N5 0.007 0.76 0.007 0.45 0.007 10.39 0.007 1.72

120 N100 0.101 0.06 0.109 0.06 0.109 0.05 0.109 6.19
N50 0.051 0.12 0.065 0.13 0.051 0.11 0.051 7.19
N10 0.014 1.17 0.014 1.31 0.014 3.16 0.014 10.60
N5 0.007 49.53 0.007 54.68 0.007 73.19 0.007 >100

135 N100 0.102 0.07 0.102 0.08 0.102 0.11 0.109 0.57
N50 0.054 0.14 0.048 0.16 0.048 0.24 0.051 1.23
N10 0.014 1.32 0.014 1.54 0.014 0.60 0.014 57.20
N5 0.007 35.45 0.007 35.56 0.007 52.46 0.007 >100

150 N100 0.094 0.05 0.101 0.07 0.081 0.12 0.107 0.65
N50 0.054 0.11 0.054 0.14 0.047 0.24 0.040 1.34
N10 0.013 1.03 0.013 1.26 0.013 2.24 0.013 98.96
N5 0.007 49.10 0.007 48.81 — — — —

165 N100 0.104 0.02 0.090 0.03 0.097 0.02 0.111 0.14
N50 0.056 0.05 0.042 0.06 0.049 0.05 0.049 0.20
N10 0.014 0.81 0.014 0.57 0.014 0.32 0.021 11.19
N5 0.007 55.63 0.007 54.73 0.007 61.02 — —

180 N100 0.097 <0.01 0.097 <0.01 0.103 0.01 0.097 1.18
N50 0.055 <0.01 0.055 <0.01 0.055 0.02 0.055 2.10
N10 0.014 <0.01 0.014 <0.01 0.014 0.22 0.014 13.43
N5 0.007 59.35 0.007 57.99 — — — —

Note: Bold values denote percentage errors δ > 5%.

© ASCE 04019022-6 J. Eng. Mech.

 J. Eng. Mech., 2019, 145(5): 04019022 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a,
 D

av
is

 o
n 

02
/2

3/
19

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



Tension-Shear Region

In the tension-shear region, 9 of 28 simulations did not converge for
both the Macorini and Izzuddin and the Citto models, whereas all
simulations for the CTSIM and the Lourenco and Rots model
reached convergence for all load step sizes. Among the converged
simulations, 27 simulations converged with less than 5% errors for
the CTSIM (i.e., only 1 simulation had δ larger than 5%), 25 sim-
ulations converged with less than 5% errors for the Lourenco and
Rots model (i.e., 3 simulations had δ larger than 5%), 17 sim-
ulations converged with less than 5% errors for the Macorini and
Izzuddin model (i.e., 2 simulations had δ larger than 5% in addition
to the 9 simulations that did not converge), and 13 simulations con-
verged with less than 5% errors for the Citto model (i.e., 6 simu-
lations had δ larger than 5% in addition to the 9 simulations that did
not converge). Considering only the converged cases, the CPU time
used by the simulation based on the CTSIM was less than or equal
to the CPU time corresponding to the Lourenco and Rots, Macorini
and Izzuddin, and Citto models in 25 of 28, 17 of 19, and 12 of 19
simulations, respectively.

The results presented in Table 3 for the tension-shear region in-
dicate that the CTSIM is (1) computationally robust for all load step
sizes except for Case N5 of load path θ ¼ 90°; (2) generally more
accurate and computationally robust than the other three constitu-
tive models considered here; and (3) computationally efficient, be-
cause for all considered load paths it can provide accurate results
with load step sizes that are larger than or equal to those needed for
any other constitutive models.

In order to understand better the mechanical differences among
the different models, isoerror maps (Simo and Taylor 1986; De
Borst and Feenstra 1990; Fuschi et al. 1992) were developed for
all four constitutive models at the point on the yield surfaces cor-
responding to load path θ ¼ 36.13° (Fig. 5). This point was selected
as representative of the tension-shear region because it corresponds
to the singularity point between the Rankine and Mohr–Coulomb
failure criteria in the Lourenco and Rots model, and thus can be
used to illustrate the advantages of using a single surface failure
criterion by eliminating the singularity in the tension-shear region.
The isoerror maps plot the error defined in Eq. (13) as a function of
the normalized increment of relative displacement in the axial
direction, un, and in the shear direction, uτ . The normalization
parameter for each of these relative displacement increments cor-
responds to the elastic relative displacement associated with the
initial yielding in each of the two directions, respectively.
Figs. 5(a–d) plot the isoerror maps for the CTSIM, Lourenco
and Rots, Macorini and Izzuddin, and Citto models, respectively.
The inset in each subfigure shows the location on the corresponding
yield surface of the point selected as the origin of the isoerror map.
The shaded region in each subfigure indicates the combinations of
relative displacement increments for which the corresponding
model cannot achieve convergence. Within the range of normalized
relative displacement increments considered here, the CTSIM is the
only model that can always achieve convergence. The Lourenco
and Rots model does not converge within a region that corresponds
approximately to Δun=uny ≥ 1 and Δuτ=uτy ≥ Δun=uny. This re-
sult was first qualitatively observed by Lourenço (1994) and is due
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Fig. 5. Isoerror maps for the point on the yield surfaces at θ ¼ 36.13°: (a) CTSIM; (b) Lourenco and Rots model; (c) Macorini and Izzuddin model;
and (d) Citto model.
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both to the presence of a singularity in the yield surface and to the
heuristic (i.e., trial-and-error) approach adopted in the Lourenco
and Rots model to identify the active yield surface(s), which cannot
guarantee convergence of the analysis for large load step sizes
(Lourenço 1994). The Macorini and Izzuddin and the Citto models
also present a region of nonconvergence, corresponding approxi-
mately to Δun=uny ≥ 2 and Δun=uny ≥ 3, respectively. This non-
convergence region for these two models is due to the presence of
a non-physically meaningful branch of the yield surface having a
quadratic functional form, as previously discussed. In particular,
the convergence of these models is impaired as soon as the imposed
relative displacement increment intercepts the non-physically
meaningful branch of the corresponding yield surface. When the
models converge, the magnitude of the errors is smallest for
the Lourenco and Rots model (less than 0.01%), followed by the
CTSIM (less than or equal to approximately 2%), and then by the
Macorini and Izzuddin and the Citto models (less than 10%). These
errors’ magnitudes increase with the complexity of the functional
form used for the corresponding yield surfaces (i.e., the Lourenco
and Rots model is represented by linear yield functions, which cor-
respond to the simplest functional form and the smallest percentage
errors). The errors also depend on the hardening/softening hypoth-
esis used in each model (i.e., the Macorini and Izzuddin and the
Citto models use a work-hardening/softening hypothesis, which
negatively affects the accuracy of their solutions compared with
the results obtained using the CTSIM and the Lourenco and Rots
model, which adopt a strain-hardening/softening hypothesis). Fi-
nally, the percentage error for all models is more sensitive to the
size of the relative displacement increments in the axial direction
than to that of the relative displacement increments in the shear
direction. Based on these results, it is concluded that the CTSIM
provides the best compromise between accuracy and robustness in
the tension-shear region among all models considered in this study.

Compression-Shear Region

In the compression-shear region, 2 of 24 simulations did not con-
verge for both the Macorini and Izzuddin and the Citto models,
whereas all simulations for the CTSIM and the Lourenco and Rots
model reached convergence. Among the converged simulations, 19
simulations converged with less than 5% errors for the CTSIM and
the Lourenco and Rot model (i.e., 5 simulations had δ larger than
5%), 18 simulations converged with less than 5% errors for the
Macorini and Izzuddin model (i.e., 4 simulations had δ larger than
5% in addition to the 2 simulations that did not converge), and 12
simulations converged with less than 5% errors for the Citto model
(i.e., 9 simulations had δ larger than 5% in addition to the 3
simulations that did not converge). Considering only the converged
cases, the CPU time used by the simulation based on the CTSIM
was less than or equal to the CPU time corresponding to the
Lourenco and Rots, Macorini and Izzuddin, and Citto models in
21 of 24, 16 of 22, and 18 of 22 simulations, respectively.

The results presented in Table 4 indicate that the performance of
the CTSIM in the compression-shear region was practically iden-
tical to that of the Lourenco and Rots model because both models
used the same compression cap model to represent the compression
failure. These models are (1) computationally robust for all load
step sizes except for the N5 (load paths θ ¼ 120°, 135°, 150°,
165°, and 180°) and N10 (load paths θ ¼ 150° and 165°); (2) more
accurate and computationally robust than the Macorini and Izzud-
din and the Citto models; and (3) computationally efficient, because
both models provide accurate results with load step sizes that are
larger than or equal to those for the Macorini and Izzuddin and
Citto models.

Discussion of One-Element Test Results

The different performance of the constitutive models considered
here can be more easily interpreted by analyzing the properties
of the integration algorithm (i.e., the elastic predictor–plastic cor-
rector strategy with local/global Newton–Raphson integration)
and its interaction with the constitutive models’ equations. During
the plastic-corrector step, different sets of equations are solved in
the different constitutive models depending upon which failure
surface(s) is (are) violated, leading to different sizes of the Jacobian
matrix that needs to be inverted. The size of this Jacobian matrix
and the complexity of each Jacobian component both contribute
toward the computational cost and accuracy of the different con-
stitutive models in the different regions (i.e., tension, shear, and
compression cap regions). For the CTSIM, three different cases can
be encountered during the plastic-corrector step: (1) violation of the
tension-shear failure surface, which involves a 6 × 6 Jacobian
matrix [Eq. (14) in the Appendix]; (2) violation of the compression
cap failure surface, which involves a 5 × 5 Jacobian matrix
[Eq. (15) in the Appendix]; and (3) violation of both failure sur-
faces, which involves an 8 × 8 Jacobian matrix [Eq. (16) in the
Appendix]. Fig. 6 illustrates the size of the Jacobian matrix used
in the different regions of the different constitutive models.

The CTSIM is at least as efficient as the Lourenco and Rots
model along load paths θ ¼ 0°, 15°, 30°, 45°, and 60°. In this re-
gion, the return mapping algorithm for the Lourenco and Rots
model requires inverting a 3 × 3, 5 × 5, and/or 7 × 7 Jacobian
matrix, depending on which failure surface(s) is (are) violated,
whereas the CTSIM requires the inversion of a 6 × 6 Jacobian ma-
trix. However, the Jacobian matrix for the Lourenco and Rots
model mainly assumes a 7 × 7 dimension because, in most cases,
both the Rankine and the Mohr–Coulomb failure surfaces are
simultaneously violated, generally for large load steps or even
for small load steps after the failure surfaces have experienced soft-
ening of their scalar parameters. The accuracy of the results ob-
tained using the Lourenco and Rots model is very similar to or
slightly lower than the accuracy of the CTSIM results for load paths
15°, 30°, 45°, and 60° because the Lourenco and Rots model re-
quires the solution of a multisurface plasticity problem (with a sin-
gularity located along the load path θ ¼ 36.13° for the specific
problem considered in this study), whereas the CTSIM uses a
single surface in the same region. For load paths θ ¼ 75° and 90°,
the Lourenco and Rots model is slightly more efficient than the
CTSIM because the Jacobian matrix has dimensions 5 × 5 for
the Lourenco and Rots model and 6 × 6 for the CTSIM. However,
the CTSIM is consistently more accurate than the Lourenco and
Rots model along these load paths, particularly for large load step
sizes. In the shear-tension region, the Macorini and Izzuddin and
the Citto models are very similar, because they use the same equa-
tion to define the failure surface and the hypothesis of work hard-
ening. Compared with the CTSIM, the Macorini and Izzuddin and
the Citto models perform poorly for load paths with small angles,
i.e., θ ≤ 60°. These two models perform better for load paths θ ¼
75° and 90°, and the Citto model is the most efficient and accurate
model for θ ¼ 90°.

In the compression-shear region, both the CTSIM and the
Lourenco and Rots model have a similar efficient and accurate
behavior, with the exception of cases corresponding to large load
step sizes. This is because in this region the two models use the
same failure criteria. In the compression-shear region, the Macorini
and Izzuddin and the Citto models are very different from each
other and from the other constitutive models. In general, the
Macorini and Izzudin model is more efficient than the CTSIM and
the Lourenco and Rots model for small load step sizes, but is less
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accurate (or lacks convergence) for large load step sizes. The Citto
model generally performs poorly, both in terms of efficiency and
accuracy. The efficiency of the Macorini and Izzuddin model for
small load step sizes can be attributed to its evolution model for the
compressive yield stress, which assumes a linear behavior up to the
peak compressive yield stress, after which softening of the com-
pressive yield stress takes place (Macorini and Izzuddin 2011).
By contrast, the CTSIM and the Lourenco and Rots model assume
a linear behavior only up to an initial compressive yield stress that
is significantly lower than the peak compressive yield stress
[e.g., approximately 1/3 of it for quasi-brittle materials (Bakeer
2009)], which is followed by hardening until the peak compressive
yield stress and by softening afterward [Fig. 2 and Eq. (12)]. In
addition, it appears that the lower accuracy of the Macorini and
Izzuddin and the Citto models may be related to their use of the
work-hardening hypothesis, in contrast to the CTSIM and the
Lourenco and Rots model that use the hypothesis of strain hardening.
In particular, for the specific problem considered in this paper of in-
terface element constitutive models for masonry analysis based on
the SMM approach, the hypothesis of strain hardening/softening ap-
pears to improve the robustness of the numerical response for yield
surfaces that evolve for increasing plastic deformation, as assumed
by the softening plasticity framework adopted in this study.

Constitutive Model Comparison Using Masonry
Shear Wall Experimental Data

The performance of the proposed CTSIM was compared with the
other constitutive models considered in this study through the
numerical response analysis of an unreinforced masonry shear wall
for which experimental data are available in Vermeltfoort and

Raijmakers (1993a, b). The numerical analyses were performed
for all constitutive models using the FE software ABAQUS.

The masonry shear wall consisted of a pier with a width:height
ratio approximately equal to 1, i.e., with dimensions 990 ×
1,000 mm [Fig. 7(a)]. The wall was built using wire-cut solid clay
blocks of dimensions 210 × 52 × 100 mm and mortar layers
10 mm thick, and consisted of 18 courses of blocks, 2 of which
(the bottom and top courses) were clamped to steel beams that were
used to transfer the lateral load to the system [Fig. 7(a)]. The mortar
was prepared with one part cement, two parts lime, and nine parts
sand. The experimental test involved a uniformly distributed
normal pressure (p ¼ 0.30 MPa), followed by a monotonically
increasing horizontal loading phase in which a horizontal displace-
ment Δ was applied quasi-statically to the top of the wall through
a steel beam while keeping the bottom boundary fixed horizontally.
The material properties of blocks and mortar were obtained
from experimental results of tension, shear, and compression tests
reported by Vermeltfoort and Raijmakers (1993a, b) and are
reported in Table 1 (elastic properties) and Table 2 (inelastic
properties).

Definition of FE Models for Unreinforced Masonry
Shear Wall

The SMM approach with elastic masonry units and nonlinear joints
was adopted here for the FE modeling of the unreinforced masonry
shear wall described previously. Plane stress conditions were
assumed, and geometric nonlinearity [i.e., large strains and large
displacements (Dassault Systèmes 2013)] was also included in
the simulation of the FE models. The FE model consisted of a
set of elastic masonry units bonded by potential crack, potential
slip, and crushing planes at joints [Fig. 7(b)]. To model the cracking

(a) (b)

(c) (d)

Fig. 6. Size of the Jacobian matrix for different regions of the constitutive models: (a) CTSIM; (b) Lourenco and Rots model; (c) Macorini and
Izzuddin model; and (d) Citto model.
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of the masonry units, a potential crack was placed vertically in the
middle of each unit [Fig. 7(b)]. All the degrees of freedoms were
restrained at the bottom of the FE model, and a monotonically in-
creasing horizontal displacement was applied on the side of the top
course of the FE model while keeping the top edge of the FE model
vertically fixed (Fig. 7). A general procedure for static loading
based on an incremental-iterative globally convergent Newton–
Raphson method with the line search technique was used in
ABAQUS to solve the nonlinear system of equilibrium equations
for the different FE models (Dassault Systèmes 2013). In addition,
an automatic load step increment technique was adopted for effi-
cient and robust simulation of the response of the different FE mod-
els with initial, minimum, and maximum normalized increment
sizes equal to 1 × 10−4, 1 × 10−9, and 5 × 10−4, respectively.

In the FE models of the masonry shear wall, the masonry units
were modeled using a four-node bilinear plane stress quadrilateral
element with reduced integration and hourglass control [CPS4R
element (Dassault Systèmes 2013)], and the joints and potential
cracks were modeled by using a four-node two-dimensional cohe-
sive element [COH2D4 element (Dassault Systèmes 2013)]. A
mesh sensitivity analysis of the FE Model was performed to ensure
a good compromise between accuracy and computational costs for
all the constitutive models. The mesh used in this study consisted of
six interface elements employed for each bed joint (i.e., three inter-
face elements for the bed joint of each half masonry unit), two inter-
face elements employed for each head joint and for potential
vertical cracks, and six CPS4R elements for each half masonry unit.
One FE model was built for each of the constitutive models con-
sidered in this study, i.e., the CTSIM, Lourenco and Rots,
Macorini and Izzuddin, and Citto models. The adaptive substep-
ping algorithm was activated for all considered constitutive models
to achieve maximum computational efficiency in all FE analyses.
The behavior of the potential vertical cracks did not include the
compression failure mechanism. Thus, the compression failure sur-
face of the CTSIM, Lourenco and Rots model, and Macorini and
Izzuddin model was deactivated for the interface element of poten-
tial vertical cracks, and a high dummy value in the Citto model was
used for the compressive yield stress to avoid activation of the fail-
ure surface in the compression region of this constitutive model.

Comparison of FE Responses and Experimental Data

The experimental load-displacement curves with their numerical
counterparts for all constitutive models are compared in Fig. 8.
The FE response results obtained using any of the interface element
constitutive models considered in this study were in very good

agreement with the experimental behavior, with a ratio of the nu-
merically simulated peak load to the average experimental peak
load equal to 1.04, 1.01, 1.10, and 0.98 for the CTSIM,
Lourenco and Rots, Macorini and Izzuddin, and Citto models, re-
spectively. The deformed shape and the minimum principal stress
distribution (corresponding to the maximum compressive stress) at
an applied top horizontal displacement Δ ¼ 4 mm (i.e., the maxi-
mum displacement recorded in the experimental tests) of the FE
analyses using different constitutive models are presented in Fig. 9.
For the sake of visualization, the interface elements are represented
by empty spaces in this figure so that highly plasticized interface
elements appear as openings between masonry units. The stress dis-
tributions of the shear wall FE models corresponding to the differ-
ent constitutive models were very similar. In addition, the crack
patterns were also similar to those observed experimentally for
all FE models, except for that corresponding to the Citto model.
During the application of the monotonically increasing horizontal
load, horizontal tensile cracks developed at the bottom and top of
the wall, particularly in the bed joint at an early loading stage, fol-
lowed by the formation of a diagonal stepped crack due to a com-
bined tension-shear failure of the joints. For large horizontal load
levels, the diagonal stepped crack was followed by crushing of the
toes of the masonry and tensile cracking within the masonry units,
leading to the overall failure of the masonry wall. The cracking of
the masonry units was significant for all constitutive models except
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Fig. 7. Masonry shear walls: (a) shear walls; and (b) SMM used for simulating the shear wall.
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Fig. 8. Comparison of experimental and numerical results in terms of
load-displacement response of the shear wall.
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the Citto model, in which the behavior of the potential vertical
crack within a unit was more ductile than for the other constitutive
models, leading to smaller crack’s openings. This behavior was due
to the use of a high dummy value for the compressive yield stress of
cracks within the masonry units, which was required to avoid the
activation of the compressive failure surface in the Citto model. In
fact, whereas for the CTSIM, Lourenco and Rots, and Macorini and
Izzuddin models the compressive failure surface is independent of
the tension-shear behavior, a change of the compressive yield stress
in the Citto model also affects the shape of the failure surface in the
tension-shear region. This shape change deteriorates the capability
of the Citto model to simulate the brittle cracking of masonry units.

Assessment of Computational Cost

The FE models corresponding to the different constitutive models
were also compared in terms of computational cost. In particular,
Table 5 reports the number of increments, cutbacks (reduction of
load/displacement increment size when the iterative global solution
algorithm cannot converge within a specified number of iterations),
and total iterations (Dassault Systèmes 2013), as well as the CTRs
corresponding to the FE analyses for each of the considered

constitutive models. The CTRs were calculated with respect to
the total CPU time corresponding to the FE analysis using the
CTSIM, which was assumed as a reference with CTR ¼ 1.00.
The FE analysis based on the CTSIM took 9.53 h of CPU time
using an Intel Core i5-2400S 2.50 GHz processor and 12.0 GB
RAM. The FE analysis using the CTSIM was found to be the least
computationally expensive among those considered in this study.
The second most computationally efficient model was the Macorini
and Izzuddin model, with CTR ¼ 1.22, followed by the Lourenco
and Rots model (CTR ¼ 1.37) and the Citto model (CTR ¼ 1.48).
Moreover, the CTSIM completed the simulation with the smallest
numbers of increments, cutbacks, and total iterations. This result
indicates that the CTSIM can allow FE simulation of the masonry
shear wall with larger load steps than those of the other interface
element constitutive models, which explains the lower computa-
tional cost of the proposed constitutive model.

Table 6 reports the number of the local iterations corresponding
to the different regions of constitutive models during the FE
simulations of the benchmark masonry shear wall. The CTSIM re-
quired the least number of local iterations, 21.15 million, followed
by the Macorini and Izzuddin (24.77 million), Lourenco and Rots
(27.68 million), and Citto models (29.81 million).

The FE simulation with the CTSIM required 17.96 million local
iterations (out of 21.15 million) occurring in the tension and shear
failure region, which corresponds to a 6 × 6 Jacobian matrix. For
the Lourenco and Rots model, 24.58 million local iterations (out of
27.68 million) occurred in the same failure region. These local iter-
ations were associated with three different failure conditions:
(1) violation of the Rankine failure criterion, which requires the
inversion of a 3 × 3 Jacobian matrix (0.52 million iterations);
(2) violation of the Mohr–Coulomb failure criterion, which requires
the inversion of a 5 × 5 Jacobian matrix (18.47 million iterations);
and (3) violation of both failure criteria simultaneously (T-S corner),

(a) (b)

p = 0.30 MPap = 0.30 MPa

(f)(e)(d)

(c)

0.5
0.0

-0.5
-1.0
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-10.5
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Fig. 9. Comparison of experimental and numerical results: (a and b) experimental crack patterns for the two specimens; (c) deformed shape and
distribution of minimum principal stress for CTSIM; (d) deformed shape and distribution of minimum principal stress for Lourenco and Rots model;
(e) deformed shape and distribution of minimum principal stress for Macorini and Izzuddin model; and (f) deformed shape and distribution of
minimum principal stress for Citto model.

Table 5. Load increments and CTR for different constitutive models in the
analysis of the benchmark masonry shear wall

Item CTSIM
Lourenco and
Rots model

Macorin and
Izzuddin model

Citto
model

Increments 26,620 29,679 35,564 40,119
Cutbacks 6,796 7,861 9,538 11,137
Total iterations 106,567 114,378 136,680 170,495
CTR 1.00 1.37 1.22 1.48
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which requires the inversion of a 7 × 7 Jacobian matrix (5.59 mil-
lion iterations). Comparing the FE simulations with the CTSIM and
the Lourenco and Rots model showed that the use of a smooth fail-
ure surface instead of the two different failure surfaces (the Rankine
and Mohr–Coulomb failure surfaces) resulted in 6.62 million fewer
local iterations. Although the computational cost associated with
each local iteration for the two constitutive models was different
(generally lower for the Lourenco and Rots model), the CTSIM
resulted in lower CPU times because of the significantly smaller
number of iterations required. Therefore, it was concluded that
the use of smooth failure surface to describe the shear and tension
failure region results in a more computationally efficient interface
element constitutive model. Furthermore, the FE simulation with
the Macorini and Izzuddin model required 24.42 million local iter-
ations violating the tension and shear failure criterion, which was
6.46 million iterations more (approximately 35.97%) than the cor-
responding total local iterations for the CTSIM. In addition, the FE
simulation with the Macorini and Izzuddin model required a com-
paratively higher number of global increments (approximately
33.60% higher) than did the CTSIM (Table 5). The higher number
of local iterations and global increments may be due to the fact that
the Macorini and Izzuddin model requires smaller load step sizes to
achieve the same accuracy as the CTSIM, as shown by the results
reported for the one-element test.

In the compression cap failure region, the FE simulations of the
masonry shear wall with the CTSIM and the Lourenco and Rots
model resulted in 3.19 million and 3.10 million local iterations,
respectively, which required the inversion of a 5 × 5 Jacobian ma-
trix. Thus, the Lourenco and Rots model was slightly more efficient
than the CTSIM in the compression cap failure region. The Macor-
ini and Izzuddin model required only 0.35 million local iterations
that corresponded to violating the compression failure surface. This
difference in the number of local iterations compared with the
CTSIM and the Lourenco and Rots model was mainly due to
the different assumptions for the evolution of the compressive yield
stress and the different values for the initial compressive yield
stress. In fact, these different assumptions resulted in the Macorini
and Izzuddin model exhibiting linear elastic behavior for a much
wider range of strains and stresses compared with the CTSIM and
the Lourenco and Rots model.

The FE simulation of the masonry shear wall with the Citto
model resulted in the largest number of local iterations, 26.81 mil-
lion local iterations, compared with the other constitutive models.
Thus, the Citto model was the least efficient model among those
considered in this study for simulating the response of this masonry
shear wall. This result was due to (1) the lower accuracy in normal
and shear stress evaluations for a given load/displacement step size
(as shown by the results reported for the one-element test); (2) the
larger size of the Jacobian matrix (10 × 10) that needs to be

inverted in the local iterations; and (3) the more-complex equation
used for representation of the single failure surface. The compari-
son of the computational costs of the FE simulations corresponding
to the different constitutive models considered in this study (i.e., the
CTSIM, Lourenco and Rots model, Macorini and Izzuddin model,
and Citto model) indicates that the use of a single failure surface for
all failure modes decreases the overall computational efficiency of
the interface element constitutive model.

Conclusions

A new interface element constitutive model, the coupled tension-
shear interface model (CTSIM), was proposed in this paper for
finite-element analysis of masonry using the simplified micromod-
eling approach. This new model is capable of simulating tension
cracking, shear slipping, and compression failure, and is defined
by a convex composite failure surface consisting of a tension-shear
failure criterion and a compression cap failure criterion. The con-
stitutive model is implemented in the FE software ABAQUS
through a user-defined material subroutine. The different constitu-
tive equations of the CTSIM are integrated using the implicit back-
ward Euler integration method, and the integrated equations are
solved monolithically with the local/global Newton–Raphson tech-
nique, which leads to a combined local and global solution strategy.
Moreover, the CTSIM is combined with an adaptive substepping
strategy to ensure convergence and accuracy of the final solution
for larger load step sizes.

The performance of the CTSIM was assessed through a series of
one-element tests and through the comparison of FE response
simulations and experimental results for an unreinforced shear wall.
Furthermore, the robustness, computational cost, and accuracy of
the CTSIM were also compared with three constitutive models
available in the literature, i.e., the Lourenco and Rots, Macorini
and Izzuddin, and Citto models. The comparison of one-element
test results showed that the CTSIM is at least as efficient as and
generally more robust than the other constitutive models for vary-
ing load step sizes and load paths. The comparison of the FE results
for the masonry shear wall indicated that the CTSIM is more effi-
cient than and at least as accurate as the other constitutive models.
Moreover, it was concluded that (1) the use of a single failure sur-
face for Mode-I and Mode-II failure can improve the computational
efficiency and robustness of the constitutive model compared with
constitutive models that use two separate failure surfaces; (2) the
use of a single failure surface for all failure mechanisms has neg-
ative effects on the computational efficiency and robustness of the
constitutive model compared with constitutive models that use mul-
tisurface criteria; and (3) constitutive models based on the hypoth-
esis of strain hardening seem to be more efficient and robust than
those based on the hypothesis of work hardening.

Table 6. Number of iterations under different conditions for different models

Violation of failure
criterion

CTSIM Lourenco and Rots model Macorini and Izzuddin model Citto model

Iterations (millions) % Iterations (millions) % Iterations (millions) % Iterations (millions) %

Rankine — — 0.52 1.89 — — 29.81 100
Mohr–Coulomb — — 18.47 66.74 — —
Tension-shear 17.96 82.60 — — 24.42 98.58
Compression cap 3. 01 16.58 2.93 10.58 0.32 1.31
T-S cornera — — 5.59 20.19 — —
S-C cornerb 0.18 0.82 0.17 0.60 0.03 0.11
Total 21.15 27.68 24.77 29.81
aMultisurface singularity between Rankine and Mohr–Coulomb failure criterion.
bMultisurface singularity between Mohr–Coulomb or tension-shear and compression cap failure criterion.
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Appendix. Integration Scheme for Constitutive
Equations

The local/global Newton–Raphson strategy (Ottosen and Ristinmaa
2005; Caballero et al. 2008; Macorini and Izzuddin 2011) is used
to solve the nonlinear system of algebraic equations obtained
from the implicit backward Euler integration (Simo and Hughes
2006) of the CTSIM. This integration procedure leads to a set
of algebraic-incremental equations that are solved using an elastic
predictor-plastic corrector approach. The plastic correction step is
performed when the trial stress violates at least one failure criteria
(failure surfaces) and consists of an iteration process that requires

(1) evaluating the residuals of the nonlinear constitutive equations,
(2) evaluating the Jacobian of the residuals, (3) solving the set of
algebraic equations to obtain the increments of the independent var-
iables, and (4) evaluating the updated residuals and repeating the
iteration until these residuals become smaller than a specified tol-
erance. Three different cases can occur in the plastic correction
step: (1) violation of the tension-shear failure criterion, (2) violation
of the compression cap failure criterion, and (3) violation of both
tension-shear and compression cap failure criteria. The Jacobians
of the residuals for these three cases are
1. Violation of the tension-shear failure criterion, with independent

variables σ, κ1, κ2, and Δλ1

Jðσ;κ1; κ2;Δλ1Þ ¼

2
66666666666664

I3 þ k · Δλ1 ·
∂2Q1

∂σ2 k · Δλ1 ·
∂2Q1

∂κ1∂σ k · Δλ1 ·
∂2Q1

∂κ2∂σ k ·
∂Q1

∂σ
−∂Δκ1

∂σ 1 − ∂Δκ1
∂κ1 −∂Δκ1

∂κ2

−∂Δκ1
∂λ1

−∂Δκ2

∂σ −∂Δκ2

∂κ1 1 − ∂Δκ2

∂κ2

−∂Δκ2
∂λ1

∂F1

∂σ
∂F1

∂κ1

∂F1

∂κ2 0

3
77777777777775
6×6

ð14Þ

where I3 ¼ 3 × 3 identity matrix; and Δλ1 = increment of the plastic multiplier for the tension-shear failure surface F1ðσ; κ1;κ2Þ.
2. Violation of the compression cap failure criterion, with independent variables σ, κ3, and Δλ2

Jðσ;κ3;Δλ2Þ ¼

2
66666664

I3 þ k · Δλ2 ·
∂2F2

∂σ2 k · Δλ2 ·
∂2F2

∂κ3∂σ k ·
∂F2

∂σ
−∂Δκ3

∂σ 1 − ∂Δκ3

∂κ3

−∂Δκ3
∂λ2

∂F2

∂σ
∂F2

∂κ3 0

3
77777775
5×5

ð15Þ

where Δλ2 = increment of the plastic multiplier for the compression cap failure surface F2ðσ;κ3Þ.
3. Violation of both tension-shear and compression cap failure criteria (S-C corner), with independent variables σ, κ1, κ2, κ3,Δλ1, andΔλ2

Jðσ;κ;Δλ1;Δλ2Þ ¼

2
666666666664

I3 þ k · Δλ1 ·
∂2Q1

∂σ2 þ k · Δλ2 ·
∂2F2

∂σ2 k · Δλ1 ·
∂2Q1

∂κ∂σþ k · Δλ2 ·
∂2F2

∂κ∂σ k ·
∂Q1

∂σ k
∂F2

∂σ
−∂Δκ

∂σ I3 − ∂Δκ
∂κ −∂Δκ

∂λ1 −∂Δκ
∂λ2

∂F1

∂σ
∂F1

∂κ 0 0

∂F2

∂σ
∂F2

∂κ 0 0

3
777777777775
8×8

ð16Þ

where κ ¼ fκ1;κ2; κ3gT . Some of the terms in Eqs. (14)–(16) are matrixes or vectors.
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