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Abstract: In this paper, the direct differentiation method (DDM) for finite-element (FE) response sensitivity analysis is extended to linear
and nonlinear FE models with multi-point constraints (MPCs). The analytical developments are provided for three different constraint
handling methods, namely: (1) the transformation equation method; (2) the Lagrange multiplier method; and (3) the penalty function
method. Two nonlinear benchmark applications are presented: (1) a two-dimensional soil-foundation-structure interaction system and (2)
a three-dimensional, one-bay by one-bay, three-story reinforced concrete building with floor slabs modeled as rigid diaphragms, both
subjected to seismic excitation. Time histories of response parameters and their sensitivities to material constitutive parameters are
computed and discussed, with emphasis on the relative importance of these parameters in affecting the structural response. The DDM-
based response sensitivity results are compared with corresponding forward finite difference analysis results, thus validating the formu-
lation presented and its computer implementation. The developments presented in this paper close an important gap between FE response-
only analysis and FE response sensitivity analysis through the DDM, extending the latter to applications requiring response sensitivities
of FE models with MPCs. These applications include structural optimization, structural reliability analysis, and finite-element model

updating.
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Introduction

Nonlinear finite-element (FE) analysis is widely recognized as an
essential tool in structural analysis and design. In mechanical en-
gineering, computer simulations using complex nonlinear FE
models are commonly used in industry during the design process,
reducing dramatically the need for prototype tests. In civil engi-
neering, the use of high-fidelity nonlinear models to accurately
predict the response of a structural system is even more crucial,
due to the fact that prototype testing is not an option. Design
codes are gradually accounting for the response of structures well
beyond their linear behavior [Advanced Technology Council
(ATC-55) 2005]. The state-of-the-art in computational simulation
of the static and dynamic response of structural and/or geotech-
nical systems lies in the nonlinear domain to account for material
and geometric nonlinearities governing the complex behavior of
such systems, especially near their failure range.

Recent years have seen a growing interest in the analysis of
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structural response sensitivity to various geometric, mechanical,
material, and loading parameters defining a structure and its load-
ing environment. FE response sensitivities represent an essential
ingredient for gradient-based optimization methods needed in
various sub-fields of structural engineering such as structural op-
timization, structural reliability analysis, structural identification,
and finite-element model updating (Ditlevsen and Madsen 1996;
Kleiber et al. 1997; Franchin 2004). In addition, stand-alone FE
response sensitivity analysis is invaluable for gaining deeper in-
sight into the effect and relative importance of system and loading
parameters in regards to structural response behavior.

FE response sensitivity analysis can be performed accurately
and efficiently using the direct differentiation method (DDM), at
the one-time cost of deriving and implementing response sensi-
tivity computation algorithms consistently with the algorithms
used for response-only computation (Zhang and Der Kiureghian
1993; Conte 2001; Conte et al. 2003). FE response sensitivity
analysis capabilities need to be continuously enhanced to take
advantage of the state-of-the-art in computational simulation. In-
deed, this process is undergoing as shown by the active research
in this field in recent years (Conte et al. 2004; Zona et al. 2004;
Scott et al. 2004; Barbato and Conte 2005; Haukaas and Der
Kiureghian 2005; Zona et al. 2005, 2006; Barbato and Conte
2006; Haukaas and Scott 2006; Barbato et al. 2007; Haukaas and
Der Kiureghian 2007; Scott and Filippou 2007; Scott and Hau-
kaas 2008).

This paper extends the use of DDM-based FE response sensi-
tivity analysis to FE models with multi-point constraints (MPCs).
MPCs enforce relations among the degrees of freedom (DOFs) at
two or more distinct nodes in a FE model (Felippa 2001; Cook
et al. 2002). The use of MPCs arises very often in FE structural
analysis, e.g., to enforce (1) an equal-displacement behavior (i.e.,
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translations and/or rotations at different nodes are constrained to
be equal); (2) a rigid body behavior (i.e., displacements at differ-
ent nodes are related as if connected with rigid links, e.g., rigid
body constraint, rigid diaphragm constraint, rigid plate constraint,
rigid rod constraint, and rigid beam constraint); and (3) symmetry
and antisymmetry conditions. Therefore, widely used commercial
FE programs (e.g., SAP2000, ADINA, and ABAQUS) have rich
libraries of MPCs based on several different methods for handling
constraints.

Up to date and to the best of the writers’ knowledge, a clear
analytical and algorithmic treatment of MPCs is missing in the
context of DDM-based response sensitivity analysis. The problem
has been usually circumvented by using ad hoc modeling solu-
tions (e.g., enforcing approximately MPCs by using very stiff
fictitious elements), leading to inefficiency and/or inaccuracy that
hampered the advantages of using the DDM. This paper presents
a rigorous solution to the problem of handling MPCs in DDM-
based FE response sensitivity analysis, thus extending the use of
the latter to a broader range of FE models.

Finite-Element Response and Response Sensitivity
Analysis

The computation via DDM of FE response sensitivities to mate-
rial, geometric and loading parameters requires the extension of
the FE algorithms for response-only computation. If r denotes a
generic scalar response quantity, the sensitivity of r with respect
to the material or loading parameter 6 is defined as the (absolute)
partial derivative of r with respect to 6 evaluated at =60, i.e.,
arl 30 \9:90, where 6,=nominal value of parameter 6.

In the sequel, following the notation proposed by Kleiber et al.
(1997), and considering the case of a single sensitivity parameter
without loss of generality, the basic equations for FE response and
response sensitivity computation are presented following the deri-
vations in Zhang and Der Kiureghian (1993). It is assumed herein
that the response of a structural/geotechnical system is computed
using a general-purpose nonlinear FE analysis program based on
the direct stiffness method, employing suitable numerical integra-
tion schemes. After spatial discretization using the FE method, the
equations of motion of the considered system can be expressed as

M(0)ii(z,0) + C(6)u(z,0) + R[u(z,60),0]=F(z,6) (1)

where r=time; 6=scalar sensitivity parameter considered here as
a material constitutive parameter or a loading parameter; u
=vector of nodal displacements; M=mass matrix; C=damping
matrix; R=history dependent internal (inelastic) resisting force
vector; and F=applied dynamic load vector, and a superposed dot
denotes one differentiation with respect to time. In the case of
“rigid-soil” earthquake ground excitation, the dynamic load vec-
tor takes the form F(z,0)=—M(6)L,(z,0) in which L is an in-
fluence coefficient vector and ﬁg(t,()) denotes the input ground
acceleration history.

It is assumed that the time continuous—spatially discrete
equation of motion (1) is integrated numerically in time using the
following general one-step integration algorithm, which contains
the Newmark-B and Wilson-6 methods as special cases (see
Chopra 2001)

l:l.n+l(e) = alu,,+](9) + a2un(e) + a3li,,(6) + a4ﬁn(e) (2)

l"ln+l(e) = a5un+1(6) + a6un(e) + a7ljn(9) + (181111(9) (3)

where g; (i=1,...,8) are user defined parameters that depend on
the specific time-step integration method employed and the sub-
script (...),,; indicates that the quantity to which it is attached is
evaluated at discrete time 7, ;. Substituting Egs. (2) and (3) in Eq.
(1) written at time t,,, yields the following nonlinear matrix al-
gebraic equation in the unknowns u,.,;=u(z,,;) to be solved at
each time step [7,,,2,,1]:

{aM(0)u,,,,(6) + asC(0)u,(0) + R[u,,,(6),0]} — F,,,(0) =0
(4)

where

F)H-l(e) = Fn+l(e) - M(e)[a2un(e) + a3lin(e) + a4ﬁn(e)]
- C(0)[agu,(6) + azu,(6) + agii,(6)] ®)

Assuming that u,,; is the converged solution (up to some itera-
tion residuals) for the current time step [7,,%,,,], and differentiat-
ing analytically Eq. (4) with respect to 6 yields the response
sensitivity equation at the structure level

d dF\% 4R 0),0
Kgﬁ(e) C W — (_) _ M (6)
do e, 30 u,
where
dF\®"  gF dM  dC
<_) =—=_ (al_ +as_)un+1(9) (7)
de/,.,  de do do
K21(0) = a,M(0) + asC(0) + K,,,,(0) (8)

where K, , | =static consistent tangent stiffness matrix of the struc-
ture at time f,,,.

The above formulation, derived explicitly for dynamic re-
sponse sensitivity analysis, contains the quasi-static case as a par-
ticular case, obtained simply by discarding in Egs. (4)—(8) all
terms involving the mass and damping matrices as well as their
derivatives with respect to the sensitivity parameter 6. In particu-
lar, the equilibrium equations, Eq. (4), and the sensitivity equa-
tions, Eq. (6), reduce to

R[un+l(e)76] - Fn+l(9) =0 (9)

dun+l _ an+1 _ aR[un+1(e)s9]
do do a0

Kn+l(e) : (10)

n+l

Handling of Constraints

Response Computation

Constraints enforce additional conditions on the DOFs of a given
FE model. More specifically, a constraint either prescribes the
value of a DOF (“single-point constraint” or “single freedom con-
straint,” e.g., support conditions) or prescribes a relation among
two or more DOFs (“MPC” or “multifreedom constraint,” e.g.,
rigid links, rigid elements, and rigid diaphragms) (Felippa 2001;
Cook et al. 2002). Furthermore, MPCs can be differentiated in
“linear” and “nonlinear” constraints, i.e., they can prescribe linear
or nonlinear relations among DOFs. In FE analysis of structural
systems, linear constraints are very common.
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Handling of single-point constraints is an easy task and re-
duces to eliminating the constrained DOFs from the equations of
motion (dynamic case) or the equations of equilibrium (quasi-
static case). Handling of MPCs requires introducing a set of equa-
tions that couple the DOFs affected by the constraints, called
“constraint equations.” For linear MPCs, the constraint equations
can be expressed in the following matrix form

Au,,(6)=Q (11)

where A =constant matrix and Q=constant vector. In general, ma-
trix A and vector Q may depend on some (e.g., geometric) pa-
rameters that are not considered as sensitivity parameters in this
paper.

Three different methods are available in the literature for im-
posing MPCs, namely: (1) the “transformation equation method”
or “master-slave elimination”; (2) the “Lagrange multiplier
method” or “Lagrange multiplier adjunction”; and (3) the “pen-
alty function method” or “penalty augmentation.” These three
methods are well known and widely applied for response-only
computation (Felippa 2001; Cook et al. 2002). Herein, the basic
ideas underlying these methods are recalled for response-only
computation, while the full DDM-based response sensitivity algo-
rithm is developed and presented in the following section for each
of these three constraint handling methods. It is noteworthy that
any type of linear MPCs (e.g., equal DOF, rigid link, and rigid
diaphragm) can be handled using the three different methods con-
sidered in this paper.

The transformation equation method requires to partition the
equations of motion (equilibrium) and the constraint equations
between retained (or master) DOFs (denoted by the subscript “r”)
and DOFs to be eliminated or condensed out (denoted by the
subscript “c” and also called slave DOFs). After some algebraic
manipulations, the slave DOFs are explicitly eliminated and the
equations of motion (equilibrium) at the structure level are ex-
pressed only in terms of the retained DOFs. The number of equa-
tions of static/dynamic equilibrium to be solved is reduced by one
for each constraint equation introduced.

The Lagrange multiplier method requires the introduction of
additional variables N (Lagrange multipliers). The constraints are
replaced by a system of applied nodal forces called constraint
forces, which enforce the constraints. Nodal displacements and
Lagrange multipliers are computed simultaneously, thus augment-
ing the number of equations to be solved by one for each con-
straint.

The penalty function method introduces in the equations of
motion (equilibrium) some penalty terms which can be physically
interpreted as fictitious high stiffness elastic elements enforcing
the constraint approximately. Each of these fictitious elements is
parameterized by a numerical weight (“penalty weight” or “pen-
alty number”), such that the constraint is satisfied exactly if the
weight goes to infinity. The problem size (i.e., number of equa-
tions to be solved) is unchanged, but the constraints are imposed
only approximately.

The considered DDM formulation and its extension to account
for MPCs can be used for FE models including both material and
geometric nonlinearities (Haukaas and Scott 2006; Scott and Fil-
ippou 2007; Barbato et al. 2007). The FE response sensitivity
algorithms presented in this paper extend the DDM to linear and
geometrically/materially nonlinear FE models with linear MPCs,
including a comprehensive study of several MPC handling tech-
niques.

Response Sensitivity Computation

The DDM-based FE response sensitivity computation is based on
the same set of equations for all three methods considered, i.e.

{alM(e)unH(e) + aSC(e)unH(e) + R[un+l(e)’e]} - F~n+l(e) =0

Au,,;(0)=Q
At 1(6)=0
A, (6)=0
(12)
and
{R[u”ﬂ(e),e] ~F,.,(6)=0 (13a)
Au,,(0)=Q (13b)

for the dynamic and quasi-static analysis case, respectively. In the
sequel: (1) the subscript “n+1” is dropped; (2) the derivations are
explicitly carried out for the quasi-static analysis case; and (3) the
final governing sensitivity equations are presented for the more
general dynamic analysis case without derivations, since these
equations can be readily obtained from the quasi-static case.

Transformation Equation Method

The structure nodal displacement vector u, nodal resisting force
vector R, nodal applied force vector F, and tangent stiffness ma-
trix K are partitioned into DOFs to be retained (subscript “r””) and
DOFs to be condensed out (subscript “c”) as

=[] o
-] o
ro=[ri ] w9
OB P IR

Partitioning also the constraint matrix A as A=[T,T,], Eq. (13)
can be rewritten as

R,[u,(0),0]-F,(6)=0 (15a)
u.(0)=T,u(0)+T.'Q (15b)

where
R,(0) =R,(0) + T_ R (0) (16a)
F,(0) =F,(0) + T F.(0) (16b)

and T,(,=—T;'T, in which the inverse of matrix T, exists if the
imposed MPCs are linearly independent. The subscript “e” de-
notes equivalent (or condensed) quantities. The external forces F,
applied along DOFs u, are equivalent (in the sense of equilib-
rium) to the applied external forces F, and F, which produce u,
and u, satisfying the constraint equation, Eq. (13b). The relation
between the equivalent internal forces R, (acting at DOFs u,) and
the internal resisting forces R, and R, (acting at DOFs u, and u,,
respectively) is similar to that between F,, F,, and F.

Differentiating Eqs. (15b) and (16a) with respect to sensitivity
parameter 6 yields, respectively
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C

du, du, (17)
de " do

and

dR, _dR, . dR,

+T,, (18)
do do do

Differentiating R, and R, with respect to 6, recognizing from Eqs.
(9), (14a), and (14b) that R,=R,[u,(0),u.0),0] and R,
=R [u,(6),u.(0),6], using the chain rule of differentiation and the
theorem of differentiation of implicit functions yields

dR, du, du, JR,
= Krr(e) + Kn(e)_ +
do do do a9 |,
(19)
dR, du, du, JR,
= KLr(e) + ch(e) +
do do do a9 |,
in which
JR, JR,
K,(0) = . K(0) =
(911, 0 U, [

IR,
,and K,.(0)= —
0 0"110

JR.
K. (0)= —
(0) p

r 0

Substituting Eq. (17) into Eq. (19) and the resulting equation into
Eq. (18) yields

dR du
“=[K,(0) + K, .(0)T, + T, K(6) + T, K. (6)T, ]
do do
JR JR
+< — r — ) (20)
a9 |, a9 |,

Finally, differentiating Eq. (15a) with respect to 6 and substituting
Eq. (20) in the resulting equation yields the following sensitivity
equations for quasi-static analysis

du, dF, JR,
K(0) Tr=Se T
do  do a9 |,
21)
du, du,
_=TI'L’
do do
where
JR, T T
K(0)= = =K, (0)+ K (0T, + TLK(0) + TLK, (0)T,
u, 0
(22)
JR JR JR,
el - T rTL_ ¢ (23)
a9 |, a9 |, a9 |,

It is worth to point out that prior to computing response sensitivi-
ties at each load/time step, the equivalent tangent stiffness matrix
K, in Eq. (21) has already been computed and factorized for
calculating the response. Thus, solution of Eq. (21) is computa-
tionally efficient.

Following a similar derivation as in Egs. (17)—(23), the sensi-
tivity equations for dynamic analysis are given by (recalling that
the subscript “n+1” has been dropped)

( oy AU, [dF\®" R,
K"0) - —~=(—] - —*
e \de/, a9 |,
du, _ du,
e~ " do
¢ . ) (24)
du du du,, du, du,
—=a1—+a2—+a3— ay
de do do do do
du du du, du, du,
— =ds +616_ +a7— +a8_
49 de do de de
where
K&"(0) = a;M,(6) + asC,(0) + K,(6) (25)
dF\% dF, daM,  dC,
— | =———la—— +as—— |u(0) (26)
e/,  do de do

In Egs. (24)—(26), the following matrix partitioning and definition
of equivalent matrix are employed

Mrr Mrc
M= and
ML'V MCC

Me = Mrr + MrcTrc + chMc'r + chML'c'Tr(,' (27)

in which the matrix quantities considered are M=M,C,
dM/df,dC/df. Similarly, the following vector partitioning and
definition of equivalent vector are also used:

v, ,
V=l | and V.=V,+TLV, (28)

c

in which the vector quantities considered are V=df/d6,
(dF/de)®",

It is important to recognize that correct application of the
DDM requires the updating of the complete (retained and con-
densed out DOFs) vectors of nodal displacement, velocity and
acceleration response sensitivities at each time step.

Lagrange Multiplier Method
Eq. (13) is rewritten as (Felippa 2001)

{R[u(e), 0]+ ATA(0) = F(0) =0 o)

Au(9)-Q=0

where A=vector of Lagrange multipliers. This augmented set of
equations needs to be solved simultaneously for all variables (i.e.,
u and M) in both linear and nonlinear analysis. The number of
equations to be solved is equal to the sum of the number of
unrestrained (free) DOFs and the number of imposed constraints.
In the Lagrange multiplier method, the constraints are replaced by
a system of applied nodal forces —AT\, called constraint forces,
which enforce the constraints exactly. Thus, it is clear that the
Lagrange multipliers A are functions of the sensitivity parameters
considered in this study (i.e., material and loading parameters).
For the purpose of response sensitivity analysis, the governing
equilibrium equations for the response, Eq. (29), are differentiated
with respect to 6 to obtain the following response sensitivity
equations (in matrix form) in the case of quasi-static analysis:
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du
1 = dF IR
K A do —_— - —
=1d0 0 |4 (30)
A 0 d\
— 0
do

In the dynamic analysis case, the response sensitivity equations
become (recalling that the subscript “n+1" has been dropped)

i
du dF\® 4R
K™ AT ] a6 —] - —
=1\d0 a9 |,
A 0 d\
— 0
{ @ (31)
du du du, du, du,
——=a + a, + as + ay
do do do do do
du du du, du, du,
=45 __ [273 + ar;—— + ag
\ do do do do do

Penalty Function Method

The following equation is constructed from Eq. (13) (Felippa
2001)

R[u(0),0]+ (ATaA)u(0) - F(0) —ATaQ =0 (32)

where a=diagonal matrix of penalty weights, with o;>0 and
a;=0 for i#j (i,j=1,2, ... ,npop in which npor=number of un-
restrained DOFs). For conservative systems, Eq. (32) is obtained
from minimization of the potential energy of the considered struc-
tural system augmented by the penalty function 1/2(Au
-Q)"a(Au-Q), also called Courant quadratic penalty function
(see Felippa 2001), i.e., equating to zero the derivative of the
augmented potential energy with respect to u. The penalty terms
introduced in the governing equilibrium equations, Eq. (32), can
be physically interpreted as forces acting in fictitious high stiff-
ness elastic elements enforcing the constraint approximately. The
term AaA is commonly referred to as “penalty matrix.” The
stiffnesses of these fictitious elements are parameterized by the
penalty weights o; so that the constraints are satisfied exactly if
these weights go to infinity, in which case the solutions of Egs.
(13) and (32) coincide. In the case of structural systems with
nonlinear hysteretic material behavior (i.e., nonconservative sys-
tems), Eq. (32) is obtained through the introduction of the penalty
terms by analogy with conservative systems.

The number of equations to be solved in Eq. (32) is the same
as for the unconstrained structural system, but the constraints are
imposed only approximately for finite values of the penalty
weights o;;. Particular care is needed in the choice of the penalty
weights to balance the trade-off between reducing the constraint
violation, which requires to increase the penalty weights, and lim-
iting the solution error due to ill-conditioning with respect to
inversion of the modified tangent stiffness matrix, K+(ATaA), at
a given iteration of a given load step. This ill-conditioning in-
creases for increasing values of the penalty weights.

For response sensitivity analysis, the governing equilibrium
equations in Eq. (32) are differentiated with respect to 6 yielding
the following response sensitivity equations for quasi-static analy-
sis:

(33)

da dF IR
[K+(ATaA)] —=—- —
de do a9 |,
In the dynamic analysis case, the response sensitivity equations
are given by (recalling that the subscript “n+1” has been

dropped)

.
da [dF\¥ 4R
[KY + (ATaA)]- — = (—) - —
do ~ \ de a9 |,
) du du du, di, du, (34)
—=a,—_-+a,—_+ay—_ +a
o 'de  tde  Cdo tao
du du du,, du,, du,
—=as—_+tag—_ ta;—_ +ag
[ d0 do do do do

In order to obtain consistent response sensitivities (Conte et al.
2003), the penalty weights in the sensitivity equations, Eqgs. (33)
and (34) must be equal to the penalty weights used for response
computation in Eq. (32). Clearly, the choice of the penalty weight
values affects the accuracy of both response and response sensi-
tivity, but in a consistent way.

Validation Examples

The DDM-based response sensitivity computation algorithms for
handling MPCs presented above were implemented by the writers
in the finite-element analysis software framework OpenSees
(Mazzoni et al. 2005; Gu 2008). OpenSees is an open source
object-oriented software framework written in C++ program-
ming language for static and dynamic, linear and nonlinear FE
analysis of structural and/or geotechnical systems. OpenSees pro-
vides capabilities for response, response sensitivity and reliability
analyses of structural, geotechnical and soil-foundation-structure
interaction (SFSI) systems. Algorithms for response-only analysis
based on FE models with MPCs were already implemented in
OpenSees for all three constraint handling methods considered in
this paper. Extension of these algorithms to enable response sen-
sitivity analysis while using FE models with MPCs greatly en-
hances the existing capabilities of OpenSees. To date, the MPCs
available in OpenSees are: (1) “equal DOF,” which enforces equal
displacements/rotations at different DOFs of the FE model; (2)
“rigid link,” which imposes a rigid connection between different
DOFs; and (3) “rigid diaphragm,” which imposes a rigid behavior
for the in-plane motion of nodes belonging to the same plane.

The methodology presented in this paper for DDM-based FE
response sensitivity computation and its software implementation
was validated by comparing DDM and forward finite difference
(FFD) analysis results for several application examples using all
three constraint handling methods considered. Due to space limi-
tation, only selected results from two benchmark applications
analyzed using the transformation equation method are presented
in the following sections. It is noteworthy that, for each applica-
tion example considered, FE response and response sensitivity
results obtained using different constraint handling methods
present only negligible differences, which are related to the con-
vergence tolerance used for response analysis.

Two-Dimensional Soil-Foundation-Structure Interaction
System

The first application example consists of a two-dimensional SFSI
system subjected to earthquake excitation. The structure is a two-
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SFSI system model (unit: m)
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Fig. 1. 2D model of SFSI system: geometry, cross-sectional properties of structural members, and input ground motion

story, two-bay, reinforced concrete frame, as shown in Fig. 1. The
foundations consist of reinforced concrete square footings below
each column. The foundation soil is a layered clay with material
properties varying along the depth.

The frame structure of this SFSI system is modeled by using
displacement-based Euler-Bernoulli frame elements with distrib-
uted plasticity and four Gauss-Legendre integration points. Every
physical beam and column is discretized into three and two frame
elements, respectively, of equal length. Section stress resultants at
the integration points are computed by using fiber sections with
concrete and reinforcing steel material layers. The concrete ma-
terial is modeled using the Kent-Scott-Park model with no tension
stiffening (Scott et al. 1982). The concrete constitutive parameters
are: f,=concrete peak strength in compression; f,=residual
strength; gp=strain at peak strength; and &,=strain at which the
residual strength is reached. Different material parameters are
used for the confined (identified by the subscript “core”) and un-
confined (identified by the subscript “cover”) concrete in the col-
umns. The constitutive behavior of the reinforcing steel is
modeled using the one-dimensional J, plasticity model with lin-
ear kinematic and isotropic hardening (Conte et al. 2003). The
material parameters defining the J, plasticity model are: E
=Young’s modulus; f,=yield strength; H,;,=kinematic hardening
modulus; and H;,,=isotropic hardening modulus.

The foundation footings and soil layers are modeled using
isoparametric four-node quadrilateral finite elements with bilinear
displacement interpolation. The foundation footings are modeled
as linear elastic with Young’s modulus E=20,000 MPa and
Poisson’s ratio v=0.20. The soil mesh is shown in Fig. 1. The soil
domain is assumed to be under plane strain condition with a con-
stant soil thickness of 4 m, corresponding to the interframe
distance. The soil materials are modeled using a pressure-inde-

pendent multi-yield-surface J, plasticity model (Prevost 1977; Q.
Gu et al. 2009) specialized for plane strain condition. Each of the
four soil layers is characterized by a different set of material
parameters, namely, G;=low strain shear modulus, B;=bulk
modulus, T;=shear strength, with i=1,2,3,4 corresponding to the
numbering of the soil layers (from top to bottom).

The three types of material constitutive models used in this
application example are shown in Fig. 2, together with the values
of the constitutive parameters. The inertia properties of the frame
structure are modeled through translational masses lumped at the
nodes, taking into account the structure own weight, as well as
dead and live loads. The inertia properties of the soil mesh are
represented through lumped element mass matrices computed
from the soil mass density taken as 2,000 kg/m?* for all soil
layers.

A crucial point in modeling SFSI systems such as the one
considered here is the use of MPCs in order to: (1) enforce dis-
placement compatibility at the interface between structural
(frame) elements and continuum (quadrilateral) elements
(column-footing connections), and (2) impose a simple shear con-
dition for the soil (see Fig. 3). These modeling requirements are
satisfied by using the equal DOF type of MPC.

FE response and response sensitivity analyses are performed
using the model described above. After quasi-static application of
the gravity loads (modeled as vertical forces concentrated at the
nodes of the FE mesh), earthquake excitation is applied by im-
posing a total acceleration time history at the base of the compu-
tational soil domain. The ground acceleration time history
considered is the balanced 1940 El Centro earthquake record
scaled by a factor of 5 (Fig. 1). Response sensitivities to all ma-
terial parameters (four parameters for the confined concrete, four
for the unconfined concrete, four for the reinforcing steel, three

Concrete Steel Soil \EU' T Hyperbolic backbone
(o) f |- e Toax | curve
Ty L
_— E-(H,, +H,) E e T
P S m
1 R TOE+H,, +H,,
3 Y 4
fe Octahedral shear
/e \E o Jg 95 stress-strain
/| 21c/€0 f, Deviatoric plane
Par.| Confined | Unconfined | Unit Par. Value Layer # | G;|kPa] |Bi[MPa] | 7;[kPa]
€ 0.004 0.002 - E [MPa] 200000 1 54450 160 33
€, 0.014 0.008 - fy [MPa] 248.2 2 33800 100 26
f, 345 27.6 MPa Hyw [MPa] | 16129 3 61250 180 35
f, 20.7 0.0 MPa Hiso [MPa] 0 4 96800 290 44

Fig. 2. Material constitutive models used in the SFSI model
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Nodes on the boundaries at same elevation z are tied
together (both horiz. and vert.) /

/

Soil  Beam Nodes tied together
/ Footing

>

Equal DOF: u; = uj;
i, j: DOF numbers

Fig. 3. Multipoint constraints used in the SFSI model: equal DOF

for each of the four soil layers, and two for the elastic foundation
footings for a total of 26 material parameters) are computed using
the DDM.

Figs. 4 and 5 show the time histories of the interstory drifts (at
the middle column) and soil interlayer drifts (at the nodes below
the middle column), respectively. In Fig. 4, it is observed that the
time histories of the two interstory drifts are very similar, since
the overall rotation (rocking) of the structure due to soil flexibility
produces a major contribution to the floor horizontal displace-
ments. Fig. 6 displays the moment-curvature hysteretic response
at the left-most Gauss-Legendre integration point of the left beam
at the first story, identified in Fig. 1 as Section 1 (S;). Fig. 7
provides the shear stress-strain hysteretic response at Integration
Point 1 (IP, see Fig. 1) near the bottom of the soil mesh. From
Figs. 5-7, it is observed that, during the earthquake considered,

150 i i T i T

100y

=501

Moment [kN-m]
S

-100p

“13%15 —0.01 —0.005 0

0.005 001 0015
-1
x [m™]

Fig. 6. Response of the 2D SFSI system: moment-curvature hyster-
etic response at section S; (see Fig. 1)

the SFSI system undergoes significant inelastic behavior in both
the structure and the foundation soil. In particular, large inelastic
and residual interlayer drifts are induced in the bottom soil layer
(see Fig. 5) due to (1) the high intensity earthquake excitation
considered (peak ground acceleration at the base of the computa-
tional soil domain=1.59 g) and (2) the low postyield shear stiff-
ness in the clay soil model.

In conjunction with the FE response analysis, a FE response
sensitivity analysis is performed. Asymptotic convergence of FFD
analysis results (i.e., convergence for increasingly smaller pertur-
bations of the sensitivity parameter) to DDM results has been

0.1
0.05

-0.05

Interstory drifts [m]

-0.1

-0.15

Time [s]

Fig. 4. Response of the 2D SFSI system: time histories of interstory drifts
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Fig. 5. Response of the 2D SFSI system: time histories of soil interlayer drifts
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Fig. 7. Response of the 2D SFSI system: shear stress-strain hyster-
etic response at integration point IP; of the soil (see Fig. 1)

verified for several global and local response quantities as well as
for all sensitivity parameters considered. Due to space limitation,
only few of these results are presented here. Fig. 8 shows the
asymptotic convergence of FFD-based to DDM-based sensitivi-
ties of the first interstory drift (global response quantity) to the
yield stress of the reinforcing steel. Fig. 9 provides a zoom view
of this convergence trend. Response sensitivities are given in nor-
malized form, i.e., multiplied by the nominal value of the corre-
sponding sensitivity parameter, and can thus be interpreted as one
hundred times the change in the response quantity due to one
percent change in the sensitivity parameter. These normalized
sensitivities directly provide the relative importance of the differ-
ent parameters on the response quantity of interest. The conver-
gence studies performed validate the analytical formulation and
the computer implementation of the DDM algorithms for han-
dling MPCs in regards to the two-dimensional SFSI system con-
sidered here as first application example. Fig. 10 displays the time
histories of the sensitivities of the frame first interstory drift to the
following material parameters: (1) f, .oe=strength of core con-
crete; (2) f,=yield stress of reinforcing steel; and (3) 7;=shear
strength of the third soil layer (second layer from the bottom).
Each of these three parameters, f cor, f» and 73, represents the
parameter to which the first interstory drift time history is most
sensitive for each of the three material types (concrete, reinforc-
ing steel, and soil, respectively). It is noteworthy that, in general,

0.07 ; : .

—DDM
0.06 CARSE = 1e-1 ]

yy
0.05} AT/t =1e-3 ]
— x AfJi =1e-4 TN
g 0.04f vy = ]

86 565 57 5.75 5.8
Time [s]

Fig. 9. Validation of DDM results for the 2D SFSI system through
FFD analysis: zoom view of normalized sensitivity of first interstory
drift to yield stress f, of reinforcing steel

the strength related material parameters become predominant in
affecting the system response when the system undergoes signifi-
cant yielding (Barbato 2007; Gu 2008) as in the present case. As
shown in Fig. 10, 75 is the parameter with the largest peak abso-
lute value (over the entire time history) of the normalized sensi-
tivities. The sensitivity of A, with respect to T; remains positive
over most of the earthquake duration, indicating that an increase
in 75 produces an increase in A,. In fact, the value of 75 sets a
limit on the seismic load that can be transferred from the base of
the soil domain to the base of the foundations and therefore to the
superstructure. If the earthquake excitation is strong enough to
yield the soil, an increase in T3 produces larger ground surface
acceleration. Fig. 10 also shows that f, is the second most impor-
tant parameter in regards to A,. The sensitivity of A, with respect
to f, is negative over most of the earthquake duration, consis-
tently with the intuitive expectation that an increase in f, reduces
A,, everything else remaining the same. “

Three-Dimensional Three-Story Reinforced Concrete
Frame Structure with Rigid Diaphragm Behavior at
Each Floor

The second application example consists of a three-dimensional,
one-bay, three-story reinforced concrete frame building with con-
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Fig. 8. Validation of DDM results for the 2D SFSI system through FFD analysis: normalized sensitivity of first interstory drift to yield stress f,

of reinforcing steel
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Fig. 10. Response sensitivities of the 2D SFSI system: normalized sensitivities of first interstory drift to most important material parameters

crete slabs at each floor, as shown in Fig. 11. Each story is of
height h=12 ft (h=3.66 m) and the bay is of span L=20 ft (L
=6.10 m) in both horizontal directions. All columns are of
squared cross-sectional shape with side d=18 in (0.457 m), eight
#8 rebars of longitudinal reinforcement and reinforcement cover
¢=1.5in (0.038 m). All beams have a rectangular cross section 24
in (0.610 m) deep and 18 in (0.457 m) wide.

The floor concrete slabs are modeled through a rigid dia-
phragm MPC at each floor level. Column and beam members are

Ground acceleration

(1fo0t=0.3048 m) 4 7 in x-direction

15 16

18 » 19 1
17 A= ?D
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Fig. 11. 3D one-bay three-story reinforced concrete building: struc-
tural model and input ground motion

0.08

modeled using two and one, respectively, displacement-based
Euler-Bernoulli frame elements with four Gauss-Legendre inte-
gration points each. Column cross sections are discretized in fi-
bers of confined concrete, unconfined concrete and steel
reinforcement. Beam cross sections are assumed to have a linear
elastic behavior. A detailed description of the FE model of this
structure is presented elsewhere (Barbato 2007; Gu 2008). The
material constitutive models used are (1) the Kent-Scott-Park
model for concrete, with parameters f..,.=34.5 MPa, f, .o
=24.1 MPa, &) .,=0.005, &, ,=0.020 for confined concrete,
and fc,cover=27'6 MPa, fu,cover=0 Mpav 80,cover=0'002’ €y cover
=0.006 for unconfined concrete, and (2) the one-dimensional J,
plasticity model for reinforcing steel, with parameters E
=210 GPa, f,=248 MPa, H;,=4.29 GPa, and H;,=0 Pa.

After quasi-static application of the gravity loads, the structure
is subjected to a bidirectional earthquake excitation with ground
acceleration time histories taken as the two horizontal compo-
nents of the 1978 Tabas earthquake (see Fig. 11). Figs. 12 and 13
plot the time histories of the interstory drifts in the x- and
y-directions, respectively. As expected, the interstory drift is larg-
est for the first story and decreases with story elevation. The peak
first interstory drift in the x-direction (0.080 m) is slightly larger
than that in the y-direction (0.069 m). These peak interstory drifts
correspond to significant interstory drift ratios of 2.20% and
1.89%, respectively. Fig. 14 shows the moment-curvature hyster-
etic response in the x-direction at the integration point identified
as Section 1 (S, in Fig. 11). Significant inelastic flexural behavior
is observed at this specific location. The irregular (“wavy”)
moment-curvature hysteresis loops are due to the interaction be-
tween axial and bidirectional bending behaviors.

In conjunction with the FE response analysis, a DDM-based
response sensitivity analysis is performed, considering as sensi-
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Fig. 12. Response of 3D building: time histories of interstory drifts in the x-direction
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Fig. 13. Response of 3D building: time histories of interstory drifts in the y-direction

tivity parameters the material parameters characterizing the con-
fined concrete (four parameters), unconfined concrete (four
parameters), reinforcing steel (four parameters) and the stiffness
properties of the elastic beams (one parameter: Young’s modulus
E=24.9 GPa), for a total of 13 material parameters. Fig. 15
shows the asymptotic convergence of FFD-based to DDM-based
sensitivities of the first interstory drift (a global response quantity)
in the x-direction, considering as sensitivity parameter the com-
pressive strength of the confined concrete f.. Fig. 16 provides a

300
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Fig. 14. Response of 3D building: moment-curvature hysteretic re-
sponse about the x-axis at Section 1 (S; in Fig. 11)

zoom view of these convergence results. Fig. 17 displays the
asymptotic convergence of FFD-based to DDM-based response
sensitivity results, in which the moment about the x-axis at Sec-
tion 1 (a local response quantity) is considered as response quan-
tity and the Young’s modulus of the reinforcing steel is considered
as sensitivity parameter. A zoom view of the above convergence
trend is given in Fig. 18. The results of the convergence studies
performed validate the analytical formulation and computer
implementation of the DDM algorithms for handling MPCs in the
context of this second application example. Fig. 19 plots the sen-
sitivity time histories of the first interstory drift in the x-direction
to the Young’s modulus of the reinforcing steel E, strength of the
unconfined concrete f, e, and yield stress of the reinforcing
steel f,. These parameters (in order of decreasing relative impor-
tance) are the ones to which the considered response parameter,
A,,, is most sensitive among all 13 sensitivity parameters consid-
ered. In this case, a stiffness related sensitivity parameter (E) is
dominant in regards to the first interstory drift A, suggesting that
the plastic deformations experienced by the building frame are
limited and the elastic properties control significantly the seismic
response behavior of the system.

Conclusions

This paper presents the extension of the direct differentiation
method (DDM) to finite-element (FE) models with multi-point
constraints (MPCs). The DDM is an accurate and efficient method
for computing FE response sensitivities to material, geometric
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Fig. 15. Validation of DDM results for 3D building through FFD analysis: normalized sensitivity of first interstory drift in the x-direction to core

concrete strength f,
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Fig. 16. Validation of DDM results for 3D building through FFD
analysis: zoom view of normalized sensitivity of first interstory drift
in the x-direction to core concrete strength f,.

and loading parameters. Response sensitivity algorithms for both
quasi-static and dynamic FE analyses are developed for three dif-
ferent constraint handling techniques, namely: (1) the transforma-
tion equation method; (2) the Lagrange multiplier method; and (3)
the penalty function method.

The response sensitivity algorithms developed in this paper are
implemented into a general-purpose nonlinear FE analysis frame-
work. The methodology is illustrated through two application
examples: (1) a two-dimensional soil-foundation-structure inter-
action system subjected to earthquake excitation, and (2) a three-
dimensional, one-bay by one-bay, three-story reinforced concrete
frame structure with floor slabs modeled as rigid diaphragms sub-
jected to bidirectional earthquake excitation. DDM-based re-
sponse sensitivities are compared with the corresponding results
obtained through forward finite difference (FFD) analyses with
decreasing values of the parameter perturbations. Asymptotic
convergence of FFD-based to DDM-based response sensitivity
results validates the algorithms presented and their computer
implementation.

The developments presented in this paper close an important
gap between FE response-only analysis and FE response sensitiv-
ity analysis through the DDM, extending the latter to applications
requiring response sensitivities using FE models with MPCs.
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Fig. 18. Validation of DDM results for 3D building through FFD
analysis: zoom view of normalized sensitivity of moment response
about the x-axis at Section 1 (S; in Fig. 11) to Young’s modulus E of
reinforcing steel

Such applications include structural optimization, structural reli-
ability analysis, and finite-element model updating.
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